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Abstract. A combination of implicit and explicit timestepping is analyzed for a system of ODEs
motivated by ones arising from spatial discretizations of evolutionary partial differential equations.
Loosely speaking, the method we consider is implicit in local and stabilizing terms in the underlying
PDE and explicit in nonlocal and unstabilizing terms. Unconditional stability and convergence of
the numerical scheme are proved by the energy method and by algebraic techniques. This stability
result is surprising because usually when different methods are combined, the stability properties of
the least stable method plays a determining role in the combination.

1. Introduction. This work considers timestepping methods for systems of or-
dinary differential equations of the form

u′(t) +Au(t) +B(u)u(t) − Cu(t) = f(t), (1.1)

in which A, B(u), and C are n× n matrices, u(t) and f(t) are n-vectors, and

A = AT � 0, B(u) = −B(u)∗, C = CT � 0 and A− C � 0. (1.2)

Here � and � denote, respectively, the positive definite and the positive semidefinite
ordering. The key properties motivating our work are that A is sparse and that
although C is not sparse, the action of C on a vector is inexpensive to calculate. This
structure is motivated by multiscale discretizations of turbulence but can also arise
from closed-loop control problems and ensemble calculations. Given this structure of
(1.1), the simplest scheme that is computationally feasible is explicit in the global,
unstable part of (1.1), that is, Cu. Accordingly, we consider

un+1 − un

k
+Aun+1 +B(un)un+1 − Cun = fn+1, k = ∆t, (1.3)

where un is the approximation to u(t = nk). This method is in the class of implicit-
explicit methods for time-dependent partial differential equations [2, 1]. Usually when
methods are combined, the stability properties of the explicit method play a deter-
mining role in the overall method. In Theorems 2.4 and 2.6, we prove the surprising
result that (1.3) is unconditionally stable. This result is outside the realm of root
condition stability analysis for uncoupled scalar problems.

In Section 2, unconditional stability and convergence of (1.3) are proved. We give
two stability proofs. The first is algebraic. Since the constants depend on the dimen-
sion of the system, we also give an energy proof of stability (with uniform constants)
that is potentially extensible to discretized PDEs. Section 3 presents numerical tests
illustrating the theory. First, we briefly summarize some motivating problems leading
to (1.1).

The basic model of the turbulent dispersion is that it is dissipative in the mean
(see [12], [16], [9]). A more accurate formulation is that its dissipative effects are
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focused on the smallest resolved scales (see [7]). This physical idea has led to algo-
rithms for numerical stabilization of transport-dominated phenomena based on eddy
diffusivity acting only on the smallest resolved scales (e.g., [10], [8], [15], [11], [5],
[6], [7], [13], [14]). The natural realization of this idea for spatial discretizations of
convection diffusion equations is diffusive stabilization on all scales and then antidif-
fusing on the large scales. This leads to the system of ODEs

u̇ij(t) + b · ∇huij − (ε0(h) + ε)∆huij + ε0(h)PH(∆hPH(uij)) = fij , (1.4)

where standard notation is used: ∆h is the discrete Laplacian, ε0(h) is the artificial
viscosity parameters and PH denotes a projection onto a coarser mesh; see Section 3
for details. The system (1.4) fits exactly the form (1.1), (1.2), where C is provided as
the matrix arising from ε0(h) term. We shall also test one algorithm as a perturbation

of the method (1.4) in which the projection is replaced by a nearest averaging ∆huij .
In both cases, the projection or averaging operator accounts for the nonlocal char-
acter (i.e., the large bandwidth) of C. On the other hand, averaging and projection
are both embarrassingly parallel operators whose action on a given vector is cheap to
perform.

Remark 1.1. (1) A second main application is discretization of turbulent flow
problems which, although nonlinear and constrained, have a similar structure to the
above (simple) linear convection diffusion problem.
(2) A known method of stabilizing the timestepping and the associated linear system
(but not the spacial discretization ) corresponds to (1.1) without the averaging:

un+1 − un

k
+ b · ∇hun+1 − (ε0(h) + ε)∆hun+1 + ε0(h)∆

hun = fn+1. (1.5)

Each time step requires the inversion of the matrix corresponding to the operator
−(ε0(h) + ε)∆h + b · ∇h + k−1I, which, for ε0 suitably chosen, is an M -matrix. Our
analysis applies to this method as well.

2. The Stability Analysis. For our analysis, we assume that B(u) is in C1(<n)
and f(t) is in C1([0,∞)). For any T > 0, we denote by

FT = max
t∈[0,T ]

‖f(t)‖2 .

Lemma 2.1. The system of ODEs (1.1) under the condition (1.2) with initial
condition u(0) = u0 has a unique solution on [0, T ], for any T > 0.

Proof Since (1.1) can be written as u̇ = ψ(t, u) with ψ being of class C0 in t and
C1 in u, local existence and uniqueness follows from the classical theory of ODEs [4,
Theorem V.8].

We now show that the solution does not experience blow-up and can be extended
everywhere. We multiply through (1.1) by (u(t)T ) and we use (1.2) to obtain that

u(t)Tu′(t) ≤ −u(t)T (A− C)u(t) + u(t)T f(t) ≤ u(t)T f(t).

Using Cauchy-Schwarz, we obtain that

d

dt
‖u(t)‖

2
2 ≤ ‖u(t)‖

2
2 + F 2

T .
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In turn, this implies that,

‖u(t)‖
2
2 ≤ ‖u(0)‖

2
2 e

t + F 2
T

(

et − 1
)

for any t in an interval containing 0 where u(t) is defined. Since u(t) does not expe-
rience blow-up in finite time, it can be extended uniquely over all of [0, T ]. �

Note that from (1.1) and our assumption that f(t) is of class C1([0,∞]), we get
that u(t) is of class C2([0,∞]). The fact that u′′(t) is continuous will be used in
determining a bound for the truncation error.

Consider the system of ODEs (1.1) under the condition (1.2) and discretized by
(1.3).

First, we note that each step of (1.3) requires the inversion of I + kA+ kBn.
Lemma 2.2. Under (1.2) the n× n matrix I + kA+ kBn has a positive definite

symmetric part and is invertible.
Proof: Let x be any nonzero vector in <n. Then

xT (I + kA+ kBn)x = xTx+ kxTAx+ kxTBnx

= ‖x‖2
2

+ kxTAx > 0. �

Since A, Bn = B(un) and C do not commute, the stability of the numerical scheme
cannot be analyzed by reduction to eigenvalues. Therefore, we formulate an energy
norm that is not increased at each time step, that is, ‖un+1‖E ≤ ‖un‖E .

Definition 2.3. The energy norm of (1.3), ‖.‖E, is given by

‖u‖E
2

= uTu+ kuTCu, (2.1)

for some u ∈ <n, and its associated inner product is < u, v >E= (Nkv)
T (Nku), with

Nk = (I + kC)
1
2 , for some u, v ∈ <n.

It can be seem immediately that the energy norm and the 2-norm satisfy the
following inequality:

√

1 + kλmin(C) ≤ ‖u‖E ≤
√

1 + kλmax(C),

where λmin(C) and λmax(C) are, respectively, the smallest and the largest eigenvalue
of C. From this inequality and the positive semidefiniteness of C, we get that the
induced matrix norms satisfy

‖A‖E ≤ ‖A‖2

√

1 + kλmax(C).

Theorem 2.4. Let un satisfy (1.3) with f(.) ≡ 0, under the condition (1.2) on
the coefficients. Then,

‖un+1‖E ≤ ‖un‖E .

Proof: Multiplying with uT
n+1 through the equation in (1.3), we obtain

uT
n+1

un+1 − un

k
+ uT

n+1Aun+1 + uT
n+1Bnun+1 = uT

n+1Cun

Since Bn is skew symmetric, uT
n+1Bnun+1 = 0. Therefore

uT
n+1

un+1 − un

k
+ uT

n+1Aun+1 = uT
n+1Cun. (2.2)
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This is equivalent to

uT
n+1un+1 + kuT

n+1Aun+1 = kuT
n+1Cun + uT

n+1un. (2.3)

Since A � C, we have that

uT
n+1un+1 + kuT

n+1Cun+1 ≤ uT
n+1un + kuT

n+1Cun. (2.4)

Define w = (un+1, k
1/2C1/2un+1)

T , v = (un, k
1/2C1/2un)T . Then (2.4)) can be writ-

ten as wTw ≤ wT v. Applying the Cauchy-Schwarz inequality, we get ‖w‖2 ≤ ‖v‖2.
Hence,

uT
n+1un+1 + kuT

n+1Cun+1 ≤ uT
nun + kuT

nCun (2.5)

or

‖un+1‖E ≤ ‖un‖E .�

The conclusion of the preceding theorem is that when (1.1) is homogeneous, f ≡ 0,
we obtain that ‖un‖E 6= ‖u0‖e, ∀n, independent of T . This means that our method
is, indeed, unconditionally stable.

Consider (1.3) with f ≡ 0, rewritten as

(I + kA+ kBn)un+1 = (I + kC)un, Bn = B(un). (2.6)

Equation (2.6) yields

un+1 = (I + kA+ kBn)−1(I + kC)un,

which, in turn, implies that

(I + kC)
1
2un+1 = (I + kC)

1
2 (I + kA+ kBn)−1(I + kC)

1
2 (I + kC)

1
2un.

Therefore, from the definition of ‖·‖E , a sufficient condition to prove the unconditional
stability result is to prove that

∥

∥

∥
(I + kC)

1
2 (I + kA+ kBn)−1(I + kC)

1
2

∥

∥

∥

2
≤ 1.

From 1.2, this can be done by using the following Lemma.
Lemma 2.5. Let D1 = D1

T � 0 and D2 = D2
T � 0 be n× n matrices such that

D1 − D2 � 0. Let D4 = D
1
2
2 and be symmetric. If D3 is an n × n skew-symmetric

matrix, then

‖ D4(D1 +D3)
−1D4 ‖2≤ 1. (2.7)

Proof: Let F = D4(D1 +D3)
−1D4. It is straightforward that

F−1 = D−1
4 (D1 +D3)D

−1
4 . For any nonzero vector x in <n,

xTF−1x = xTD−1
4 (D1 +D3)D

−1
4 x

= xTD−1
4 D1D

−1
4 x+ xTD−1

4 D3D
−1
4 x

Here we claim that D−1
4 D3D

−1
4 is skew symmetric and therefore xTD−1

4 D3D
−1
4 x = 0.

To obtain this one can notice that since D2 = D2
4 and D2 is a symmetric matrix, then
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D4 and D−1
4 are also symmetric.

Hence,

(D−1
4 D3D

−1
4 )T = D−1

4 DT
3 D

−1
4 = −D−1

4 D3D
−1
4 .

Thus

xTF−1x = xTD−1
4 D1D

−1
4 x, for any 0 6= x ∈ <n.

Using the fact that D1 −D2 is nonnegative, we obtain

xTF−1x ≥ xTD−1
4 D2D

−1
4 x = xTx, for any 0 6= x ∈ <n.

This implies that

‖x‖2
2
≤ xTF−1x ≤ ‖x‖2 .

∥

∥F−1x
∥

∥

2
, for any 0 6= x ∈ <n,

that is,

‖x‖2 ≤
∥

∥F−1x
∥

∥

2
, for any 0 6= x ∈ <n. (2.8)

Obviously (2.8) is equivalent to

‖Fy‖2 ≤ ‖y‖2 , for any 0 6= y ∈ <n. (2.9)

Since the last equation holds for any nonzero vector y, then ‖F‖2 ≤ 1.
�

For the next step, we analyze the stability of the inhomogeneous problem over
an arbitrary but finite time interval [0, T ]. We later show that the stability of the
homogeneous problem does not depend on T . Consider (1.3) with f 6≡ 0.

After some simple calculations, we get that un satisfies

un+1 = (I + kA+ kBn)−1(I + kC)un + k(I + kA+ kBn)−1fn+1. (2.10)

We denote the range of the step index n, by [0, N ], where kN = T . To simplify
the notation, we do not explicitly indicate that N depends on k and T .

Theorem 2.6. Let (1.2) hold. Then the solution of (2.10) satisfies the following
bound:

‖un+1‖E ≤ ‖u0‖E +
k

1 + kλmin(C)
Σn

p=0 ‖fp+1‖E

≤ ‖u0‖E +
T

(1 + kλmin(C))
max

t∈[0,T ]
‖f(t)‖E , ∀0 ≤ n ≤ N − 1.

Here T is the size of the integration interval.
Proof: To simplify notation, we take Nk = (I+kC)

1
2 and Mk = (I+kA+kBn)−1(I+

kC). Then the equation (2.10) can be written as

un+1 = Mkun + k(I + kA+ kBn)−1fn+1.

Using the definition 2.1, we have

(Nkun+1)
T (Nkun+1) = (Nkun+1)

TNkMkun + k(Nkun+1)
TNk(I + kA+ kBn)−1fn+1.
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Algebraic manipulation and the Cauchy-Schwarz inequality yield

‖Nkun+1‖2
2
≤ ‖Nkun+1‖2 .

∥

∥NkMkN
−1
k

∥

∥

2
. ‖Nkun‖2

+k ‖Nkun+1‖2 .
∥

∥NkMkN
−1
k

∥

∥

2
.
∥

∥N−1
k fn+1

∥

∥

2
.

Using Lemma 2.5 with D2 = N2
k and D1 + D3 = MkN

−2
k , we obtain that

∥

∥NkMkN
−1
k

∥

∥

2
≤ 1. Then the previous inequality reduces to

‖Nkun+1‖2 ≤ ‖Nkun‖2 + k
∥

∥N−1
k fn+1

∥

∥

2

This inequality can be simplified as follows:

‖Nkun+1‖2 ≤ ‖Nkun‖2 + k
∥

∥N−2
k Nkfn+1

∥

∥

2

≤ ‖Nkun‖2 + k
∥

∥(I + kC)−1
∥

∥

2
‖Nkfn+1‖2

≤ ‖Nkun‖2 +
k

(1 + kλmin(C))
‖Nkfn+1‖2 .

Thus,

‖un+1‖E − ‖un‖E ≤
k

(1 + kλmin(C))
‖fn+1‖E ,

and since (I + kC)−1 is a symmetric positive definite matrix,

‖I + kC‖2 = maxλ(I + kC)−1 =
1

(minλ(I + kC))
.

By the spectral mapping theorem λ(I + kC) = 1 + kλ(C). Therefore

∥

∥(I + kC)−1
∥

∥

2
=

1

1 + kλmin(C)
,

where λmin(C) is the minimum eigenvalue of matrix C. This implies

‖un+1‖E − ‖un‖E ≤
k

(1 + kλmin(C))
‖fn+1‖E , 0 ≤ n ≤ N − 1.

Summing from 0 to n gives

‖un+1‖E − ‖u0‖E ≤
k

(1 + kλmin(C))
Σn

p=0 ‖fp+1‖E , ∀0 ≤ n ≤ N − 1,

that is,

‖un+1‖E ≤ ‖u0‖E +
k

(1 + kλmin(C))
Σn

p=0 ‖fp+1‖E , 0 ≤ n ≤ N − 1,

which is the claimed first result. The second result follows immediately. �

The local truncation error of the method (1.3) is clearly O(∆t). In the error
estimate (which follows) we need a precise statement of this fact, which we now
derive.
To simplify our notation, we use un to denote u(tn), where u(·) is the exact solution of
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(1.1). We also use un to denote an iterate of our numerical scheme, but the particular
meaning of un will become evident from the context.

According to the definition of local truncation error [3],

τn+1 =
u(tn+1) − u(tn)

k
+Au(tn+1) +B(u(tn))u(tn+1) − Cu(tn)

−[u′(tn+1) +Au(tn+1) +B(u(tn+1))u(tn+1) − Cu(tn+1)] (2.11)

=
un+1 − un

k
− u′n+1 − (B(u(tn+1)) −B(u(tn)))u(tn+1) + C(un+1 − un).

Using the second-order integral form of the Taylor expansion around tn+1, we
obtain

un+1 − un − ku′n+1 = −

∫ tn

tn+1

u′′(t)(t− tn+1)dt,

which we rewrite as

un+1 − un

k
− u′n+1 = −

1

k

∫ tn

tn+1

u′′(t)(t− tn+1)dt = −
1

k

∫ tn+1

tn

u′′(t)(tn+1 − t)dt.

Using the first-order integral form of the Taylor expansion around tn, we obtain

(B(u(tn+1)) −B(u(tn)))u(tn+1) − C(un+1 − un) =
∫ tn+1

tn

(

d
dtB(u(t))u(tn+1) − Cu′(t)

)

dt.

Using the expression we have derived for the local truncation error τn+1, and the
preceding equations derived from Taylor’s theorem, we obtain

τn+1 = −
1

k

∫ tn+1

tn

u′′(t)(tn+1 − t)dt−

∫ tn+1

tn

(

d

dt
B(u(t))u(tn+1) − Cu′(t)

)

dt

=

∫ tn+1

tn

(

−
tn+1 − t

k
u′′(t) −

d

dt
B(u(t))u(tn+1) + Cu′(t)

)

dt.

By the mean value theorem, there exists ξn ∈ (tn, tn+1) such that

τn+1 = −u′′(ξn)(tn+1 − ξn) − k
d

dt
B(u(t))

∣

∣

∣

∣

t=ξn

u(tn+1) + kCu′(ξn). (2.12)

Hence, using the fact that 0 ≤ (tn+1 − ξn) ≤ k, we obtain that

‖τn+1‖2 ≤ kmaxtn≤s≤tn+1

(

H ‖u′′(s)‖2

+
∥

∥

d
dtB(u(t))

∣

∣

t=s

∥

∥

2
maxtn≤θ≤tn+1

‖u(θ)‖2 + ‖Cu′(s)‖2

)

.

This proves the following lemma.
Lemma 2.7. Let k = ∆t and n ≥ 0. The method

un+1 − un

k
+Aun+1 +Bnun+1 − Cun = fn+1, (2.13)

where A = AT � 0 and C = CT � 0 are n × n symmetric matrices, Bn an n × n

skew-symmetric matrix, and fn+1 = f((n + 1)k), is consistent. That is, the local
truncation error is O(∆t).
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We now bound the total error. We consider first the energy norm of truncation
error.

Lemma 2.8. Let τn+1 be the local truncation error of method (2.13). Then

‖τn+1‖E ≤ k max
0≤t≤T

(

‖u′′(t)‖E + ‖Cu′(t)‖E +

∥

∥

∥

∥

d

dt
B(u(t))

∥

∥

∥

∥

E

max
0≤s≤T

‖u(s)‖E

)

.

(2.14)
Proof: By definition of energy norm and following the identity (2.12), we get

‖τn+1‖E =

∥

∥

∥

∥

∥

−u′′(ξn)(tn+1 − ξn) − k
d

dt
B(u(t))

∣

∣

∣

∣

t=ξn

u(tn+1) + kCu′(ξn)

∥

∥

∥

∥

∥

E

for some ξn ∈ [tn, tn+1]. The conclusion follows after applying the inequality 0 ≤
tn+1 − ξn ≤ k, the triangle inequality, and the properties of the max function. Note
that

∥

∥

d
dtB(u(t))

∥

∥

E
is the induced ‖·‖E of the corresponding matrix. �

We now give a convergence result for the solution of (1.3). First, we need to
compute a certain estimate. We have that

[B(u(tn)) −B(un)]u(tn+1) =

∫ 1

0

d

dθ
[B(u(tn)θ + un(1 − θ))]u(tn+1)dt =

(∇u(B(u(tn)θn + un(1 − θn)))en)u(tn+1), for some θn ∈ [0, 1],

where en = u(tn)− un. Here u(tn) is the solution of (1.1), whereas un is the solution
of our numerical scheme.

We define the matrix Wn, by its action on a vector x ∈ <n:

Wnx = [(∇uB(u(tn)θn + un(1 − θn)))x]u(tn+1),

which results in the following identity

[B(u(tn)) −B(un)]u(tn+1) = Wnen. (2.15)

Lemma 2.9. Let u(.) be the solution of (1.1) and un be the approximation to
u(n∆t), obtained from the numerical scheme (1.3). Then there exists Γ such that,
∀t ∈ [0, T ] we have that

‖Wn‖2 ≤ Γ, and ‖Wn‖E ≤ ΓE = Γ
√

1 + kλmax(C), ∀0 ≤ n ≤ N.

Proof: From Theorem 2.6 we have that

‖un‖2 ≤ ‖un‖E ≤ ‖u0‖E + T maxt∈[0,T ] ‖f(t)‖E

≤
√

1 + kλmax(C)
(

‖u0‖2 + T maxt∈[0,T ] ‖f(t)‖2

)

, ∀0 ≤ n ≤ N.

We define

ΛE =
√

1 + Tλmax(C)

(

‖u0‖2 + T max
t∈[0,T ]

‖f(t)‖2

)

.
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From Lemma 2.1 we have that u(t) is bounded on [0, T ], and we define
Λu = maxt∈[0,T ] ‖u(t)‖2. Since B(·) is of class C1, we can define

Γ = max
θ∈[0,1], ‖u1‖2≤ΛE , ‖u2‖2=1, ‖v1‖≤Λu,‖v‖2≤Λu

‖[(∇uB(θv2 + (1 − θ)u1))u2] v1‖2 .

From the definition of Wn, we immediately obtain that

‖Wn‖2 ≤ Γ, ∀0 ≤ n ≤ N.

The second part of the conclusion follows from the inequality between ‖·‖E and ‖·‖2.
�

Theorem 2.10. Consider solving the inhomogeneous problem on the interval
[0,T]

u′ +Au+B(u)u− Cu = f

using the following method

un+1 − un

k
+Aun+1 +Bnun+1 − Cun = fn+1,

where k = ∆t, Bn = B(un) and fn+1 = f((n+ 1)k). Let en = u(tn) − un denote the
local error. Assume that e0 = 0. Then the method is convergent and

‖en+1‖E ≤

(

1 + kΓE

1+kλmin(C)

)n−1

− 1

1 + kΓE

1+kλmin(C)

k2U

1 + kλmin(C)

≤
e

TΓE

1+kλmin(C) − 1

1 + kΓE

1+kλmin(C)

k2U

1 + kλmin(C)
, ∀0 ≤ n ≤ N − 1,

when ΓE 6= 0, and

‖en+1‖E ≤ (n+ 1)
k2U

1 + kλmin(C)
≤ T

kU

1 + kλmin(C)
, ∀0 ≤ n ≤ N − 1,

when ΓE = 0, where

U = max
0≤t≤T

(

‖u′′(t)‖E + ‖Cu′(t)‖E +

∥

∥

∥

∥

d

dt
B(u(t))

∥

∥

∥

∥

E

max
0≤s≤T

‖u(s)‖E

)

.

Proof: Following the definition of the truncation error τn+1 and using the equation
(2.15), we obtain that the error, en = u(tn) − un, satisfies

en+1 − en

k
+Aen+1 +Bnen+1 − Cen = τn+1 −Wnen.

After algebraic calculations, we find that

en+1 = (I + kA+ kBn)−1(I + kC)en + k(I + kA+ kBn)−1(τn+1 −Wnen).
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We use the energy inner product to obtain

< en+1, en+1 >E=
< (I + kA+ kBn)−1(I + kC)en + k(I + kA+ kBn)−1(τn+1 −Wnen), en+1 >E .

Applying the definition of energy norm (2.1) and the substitutions Mk = (I + kA +

kBn)−1(I + kC), and Nk = (I + kC)
1
2 , we find that

(Nken+1)
T (Nken+1) =

(Nken+1)
TNkMken + k(Nken+1)

TNk(I + kA+ kBn)−1)(τn+1 −Wnen).

Using the Cauchy-Schwarz inequality, we obtain that

‖Nken+1‖
2
2 ≤ ‖Nken+1‖2 .

∥

∥NkMkN
−1
k

∥

∥

2
. ‖Nken‖2

+k ‖Nken+1‖2 .
∥

∥NkMkN
−1
k

∥

∥

2
.
∥

∥N−1
k (τn+1 −Wnen)

∥

∥

2
.

Thus

‖Nken+1‖2 ≤
∥

∥NkMkN
−1
k

∥

∥

2
. ‖Nken‖2 + k

∥

∥NkMkN
−1
k

∥

∥

2
.
∥

∥N−1
k (τn+1 −Wnen)

∥

∥

2
.

Using Lemma 2.5 with D2 = N2
k and D1 + D3 = MkN

−2
k , we obtain that

∥

∥NkMkN
−1
k

∥

∥

2
≤ 1. Hence

‖en+1‖E ≤ ‖en‖E + k
∥

∥N−2
k

∥

∥

2
‖(τn+1 −Wnen)‖E .

Equivalently, we obtain that

‖en+1‖E ≤ ‖en‖E + k
∥

∥(I + kC)−1
∥

∥

2
(‖τn+1‖E + ‖Wn‖E ‖en‖E) .

Notice that (I + kC)−1 is a symmetric positive definite matrix and

∥

∥(I + kC)−1
∥

∥

2
=

1

1 + kλmin(C)
.

On the other hand, by Lemma 2.9, there is a constant ΓE such that ‖Wn‖E ≤ ΓE .
Therefore,

‖en+1‖E ≤

(

1 +
kΓE

1 + kλmin(C)

)

‖en‖E +
k

1 + kλmin(C)
‖τn+1‖E . (2.16)

This is a recursion formula of the following form:

rn+1 ≤ arn + bτn,

which, when a 6= 0 has an upper bound of the type

rn+1 ≤ anr0 +
an−1 − 1

a
bmax

n
‖τn‖E .

Using this fact, we obtain that, when ΓE 6= 0, the following bound for the error
holds whenever 0 ≤ n ≤ N − 1.
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‖en+1‖E ≤

(

1 +
kΓE

1 + kλmin(C)

)n

‖e0‖E

+

(

1 + kΓE

1+kλmin(C)

)n−1

− 1

1 + kΓE

1+kλmin(C)

.
k

1 + kλmin(C)
max

n
‖τn+1‖E

Replacing ‖τn+1‖E by its bound (2.14) obtained in Lemma 2.8, and considering
that e0 = 0, we have, when ΓE 6= 0 and 0 ≤ n ≤ N − 1, that

‖en+1‖E ≤

(

1 + kΓE

1+kλmin(C)

)n−1

− 1

1 + kΓE

1+kλmin(C)

.
k2U

1 + kλmin(C)

with U = max0≤t≤T

(

‖u′′(t)‖E + ‖Cu′(t)‖E +
∥

∥

d
dtB(u(t))

∥

∥

E
max0≤s≤T ‖u(s)‖E

)

.
The second inequality for Γ 6= 0 follows from the inequality (1 + x)n ≤ exn, for

x > 0 and n positive integer.
When ΓE = 0, we immediately get from (2.16) and from Lemma 2.8 that

‖en+1‖E ≤ (n+ 1)
k2U

1 + kλmin(C)
, ∀0 ≤ n ≤ N − 1,

which, together with kN = T prove the inequalities for ΓE = 0.
The convergence follows from the fact that ‖·‖E converges to ‖·‖2 as k → 0 which

implies that ‖en‖2 → 0 as k → 0. �

The case ΓE = 0 occurs, for example, when B(u) is constant (which we simulate
numerically in the next section). For that case, the error increases only linearily with
the size of the interval, assuming that the derivatives up to order 2 of the solution
u(t) are uniformly bounded.

3. Numerical Results. Let Ω = [0, 1] × [0, 1]. For the equation

ut + b · ∇u− ε∆u = f, over Ω,

u = φ(x) on δΩ, (3.1)

u(x, 0) = u0(x) in Ω,

use the method described in this work, with uniform mesh and central difference. A
choice must be made for the antidiffusion operator: averaging or projection. We have
selected averaging. Since it is just outside the theory, we will thereby test the robust-
ness of the algorithm. Antidiffusion is completed by averaging, where ū(p):=weighted
average of nearest neighbors. This corresponds to filtering with δ = 2h. The method
becomes in our case

u̇ij(t) + b · ∇huij − (ε+ ε0)∆
huij + ε0∆uij

q
= h,

where q denotes how many times the average operation is taken. In our experiments
we chose q = 2 and ε = 10−4. We take b = (cos(θ), sin(θ)), where θ = 17◦.

For the boundary and initial conditions we take the line at angle θ through the
center of the domain. On the north side of the line we take φ = 1 on the boundary;
on the south side we take φ = 0 on the boundary. We take f = 0 and 0 as initial
conditions.

We performed the following experiments, all on a 32 × 32 mesh.
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Fig. 3.1. Spatial stability of the steady-state solution for various choices of the artificial viscosity

parameter ε0.
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Fig. 3.2. Stability of the numerical method demonstrated by the behavior of the energy norm
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Fig. 3.3. Numerical validation of Theorem 2.4
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Fig. 3.4. Exponential growth of the solution of the scheme that includes the advection term

explicitly

1. We ran the simulation for 1, 000 steps with a time step of 10, with the ar-
tificial viscosity parameter ε0 having successively the values 10−1, 5 × 10−3,
10−3, 10−4. We have presented no analysis for the spatial dependence of the
solution with respect to ε0, but we have included this experiment for valida-
tion, since our choice of parameters should result roughly in the steady-state
approximation for this mesh, which has been studied before in the literature.
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The results are depicted in Figure 3.1. We see that when the artificial viscosity
parameter ε0 is very small, a complete loss of coherence of the spatial structure
results, whereas too large a parameter (ε0 = 0.1) alters the steady-state
solution significantly. This effect is consistent with the typical behavior of
centered methods for the skew step problem [17].

2. For ε0 = 10−4, we ran the simulation for 100 steps with a time step of 1 and
for 1, 000 steps with a time step of 0.1. The energy norm comparison of these
computations is presented in Figure 3.2. We see that even for the very large
step, the energy norm stays bounded, consistent with our absolute stability
claim.
We also present in Figure 3.3 a comparison between the energy norms of the
distance between the successive iterates of the two cases and their outcome at
time 100. From Figure 3.2, we infer that u(100) is a reasonable approximation
to the steady-state solution. Since the equation (3.1) is linear, we have that
un−u(100) is the result of the numerical scheme applied to the homogeneous
equation associated to (3.1). From Theorem 2.4 we have that ‖un − u(100)‖E

must be a decreasing sequence, which is exactly what we observe from Figure
3.3. Note that ‖un‖E is not a decreasing sequence, as can be seen in Figure
3.3. Moreover, the sequence ‖un‖E may not even be monotonic, as seen in
Figure 3.2, for k = 0.1.

3. We compare the results of our scheme with the similar scheme that takes into
account explicitly the term that contains the skew-symmetric matrix B(un).
For the latter scheme we obtain the recursion

un+1 − un

k
+Aun+1 +B(un)un − Cun = fn+1.

We apply this scheme to our example on a 32 × 32 mesh for 1000 time steps
of length k = 1. We see the rapid exponential growth that is typical for
computations with the time step outside the region of stability.
This demonstrates that our scheme has significantly better stability proper-
ties than the alternative, which would result in linear systems of comparable
sparsity. The numerical scheme, based on a backward Euler approach that
considers all terms implicitly, though absolutely stable, will result in less
sparse linear systems since the matrix C contains an averaging operator that
substantially reduces sparsity and is not considered here for comparison.
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